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Abstract 
There is a growing global concern about water resources and an increasing interest in 
studies identifying groundwater. Alluvial aquifers exhibit varied forms and irregular 
distribution in the landscape, making their location challenging. This study applies 
machine learning (ML) techniques to detect alluvial deposits in the Riacho do Tigre 
watershed in the semi-arid region of northeastern Brazil. Fourteen input variables and one 
output variable were collected across approximately one and a half million points 
distributed along the main channels of the watershed. Using decision trees (DT), the 
model was trained and validated through k-fold cross-validation and bootstrap methods, 
achieving an accuracy of 0.92, indicating good performance in classifying alluvial areas. 
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Resumo 
Há uma crescente preocupação global com os recursos hídricos e um interesse cada 
vez maior em estudos voltados para a identificação de águas subterrâneas. Os 
aquíferos aluviais apresentam formas variadas e distribuição irregular na paisagem, o 
que dificulta sua localização. Para enfrentar essa dificuldade, o presente estudo aplica 
técnica de aprendizado de máquina para detectar depósitos aluviais na bacia 
hidrográfica do Riacho do Tigre, localizada no semiárido nordestino brasileiro. Foram 
coletadas catorze variáveis de entrada e uma variável de saída em aproximadamente 
um milhão e meio de pontos distribuídos pelos canais principais da bacia. Utilizando 
árvores de decisão (DT), o modelo foi treinado e validado através de validação 
cruzada k-fold e bootstrap, obtendo uma acurácia de 0,916, indicando um bom 
desempenho na tarefa de classificar áreas de aluvião. 
 
Palavras-chave: Hidrologia; Inteligência artificial; Árvore de decisão; Áreas 
aluvionares; Sensoriamento remoto. 
 
INTRODUÇÃO 
 

The water deficit in dryland regions directly affects surface water availability, 

including spatial and temporal continuity of river flow (SOUZA, 2015). In this configuration, 

surface water flow occurs predominantly during precipitation events, characterised as 

ephemeral rivers or seasonality during the rainy season, with the appearance of 

intermittent rivers (MCLEOD et al., 2024). At the same time, droughts historically affect 

socio-economic development in these areas. In those scenarios, even surface water 

reserves, such as lakes and artificial reservoirs, could be depleted (BÚRQUEZ et al., 

2024). In contrast, underground water reserves, including alluvial aquifers, are 

fundamental resources during dry/drought periods (SILVA and SOUZA, 2023). 

Alluvial aquifers are formed through the erosion process of slopes, which carry 

various sediments (sand, silts, clay) to the beds and banks of channels. These sediments 

are loci of alluvial water deposits with high infiltration capacity and protection against 

evaporative effects. At the same time, the low-cost techniques to explore these shallow 

aquifers emphasise their importance to isolated rural communities (RITCHIE et al., 2021), 

especially where there is a predominant crystalline rock basement and fissure aquifers. The 

fissure aquifers generally have low hydrological potential, small volume and low water 

quality (SILVA and SOUZA, 2023). Due to these characteristics, alluvial aquifers are a 

strategic element for water supply and socio-economic development in those dryland areas.  
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There is a significant increase in global concern about threats to water resources 

(TAYER et al., 2023), including alluvial aquifers. The research conducted by Jasechko et al. 

(2024) involved measurements in thousands of wells and aquifers in various arid and semi-

arid regions. The authors point out a global trend where many aquifers have experienced a 

rapid decline in recent years, primarily driven by excessive groundwater withdrawals, 

particularly for irrigation in arid and semi-arid regions, as well as reduced recharge rates due 

to decreasing precipitation and climate variability. In this context, there is a growing 

awareness of the importance of increasing knowledge about water reserves in dry areas.  

Given the complexity of identifying and monitoring these resources, Machine 

Learning (ML) models are increasingly applied to identify groundwater, including 

alluvium. Indeed, artificial intelligence techniques offer significant potential for modelling 

complex systems in studies related to water resources and other fields. This approach 

eliminates the need to establish mathematical relationships between variables or 

physical parameters of the system, as it can build these relationships during the training, 

testing, and validation processes (ZARESEFAT and DERAKHSHANI, 2023).  

The identification and mapping of alluvial aquifers present a significant challenge 

due to their dispersion across the landscape and the absence of a clearly defined 

geometric shape (CERVI and TAZIOLI, 2021). This complexity further complicates the 

task. However, ML techniques prove promising as they allow for identifying patterns in 

the data, enabling the efficient and accurate mapping of alluvial deposits. 

This research focuses on the Riacho do Tigre watershed, located in the semi-arid 

region of Northeast Brazil. This study aims to detect the presence of alluvial areas along 

the three main rivers of the basin. Approximately one and a half million points were 

distributed along the channels, with each point assigned fourteen input variables and 

one output variable, characterising the area as alluvial. Following data collection and 

preprocessing, the research employed a ML technique, specifically decision trees (DT) 

(QUINLAN, 1986), to obtain the results. 

 

DECISION TREES 
 

The advancement in computational power in recent years has increased the 

relevance of ML. One of the main challenges algorithms face in this field is 

maximising their generalisation capacity, which means providing efficient responses 
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in situations not encountered during the learning process (LIMA, 2014). This capacity 

is crucial to ensure systems make appropriate decisions in different scenarios 

(MITCHELL, 1997). 

The ML field can be categorised into four fundamental paradigms: Supervised 

Learning, Reinforcement Learning, Unsupervised Learning, and Semi-Supervised 

Learning. This research focuses on the development of a supervised DT. In this 

paradigm, algorithms are trained with a labelled dataset to learn a function that 

accurately maps inputs to their corresponding outputs (RUSSEL, 2022). 

DT helps represent knowledge acquired from datasets, organising themselves 

as a combination of constraints on the attribute values of instances. Each path from 

the root to a leaf of the tree represents a sequence of tests on attributes, where the 

internal nodes represent decision points, and the branches indicate the different 

possible outcomes. 

During the construction of the DT (Figure 1), the selection of attributes for 

splitting is determined by the purity of each node. It begins with the root node to 

create a more compact and efficient classification tree (MITCHELL, 1997). This 

process involves the recursive selection of attributes to form internal nodes and 

branches corresponding to each possible value of the selected attribute. 

 

Figura 1 – Structure of a Decision Tree 

 

Drafting: Authors (2024) 
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The construction continues until the examples in a node are homogeneous, 

creating leaf nodes, where the final classification is made. The decision regarding 

which attribute to split is based on the choice that results in a smaller and more 

accurate DT, as measured by the purity of each node along the path. 

This research utilised the CART (Classification and Regression Trees) algorithm, 

which applies to classification and regression problems. A fundamental characteristic 

of this algorithm in classification is the use of the information metric known as the Gini 

index. The Gini index is calculated as: 

 

𝐺 = 1 −  ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

 

Where n corresponds to the number of classes, pi represents the proportion of 

class i at the node. The closer the Gini index is to 0, the greater the purity of the node; 

as it approaches 0.5, the impurity increases. 

The Gini index ensures that each node represents a set of instances belonging 

to the same class, thus avoiding inconsistencies. When deciding which feature to use 

for splitting the data, the algorithm examines the distribution of instances among the 

classes to determine the purity of a node and select the best feature for the split 

(MARSLAND, 2015). 

Resampling methods are crucial tools for validating DT models. In this research 

k-fold cross-validation (HASTIE et al., 2009) and Bootstrap (EFRON and TIBSHIRANI, 

1993) were employed. In k-fold cross-validation, the observations are divided into k 

groups or folds. In each iteration, one group is retained as validation data to test the 

model, while the remaining groups are used for training. This process is repeated k 

times, ensuring each group is used once as validation data. In the end, the mean error 

of all iterations is calculated, providing a more accurate estimate of the models. 

Bootstrap, on the other hand, involves creating multiple random samples with 

replacements from the original dataset, allowing for the assessment of the model's 

variability and robustness 
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MACHINE LEARNING AND DETECTION OF ALLUVIUMS  
 

Identifying and mapping alluvial areas play a significant role in water resource 

management. The formation of alluvial aquifers occurs through the fragmentation of 

rocks and the transportation of sediments by rainfall. These sedimentary deposits are 

essential for water retention in arid regions, acting as natural reservoirs that can ensure 

water sustainability during periods of drought (BRAGA et al., 2016). 

Historically, the identification of alluviums depended on direct observations and 

geological field mapping. Initially, research was based on visual descriptions and 

manual analyses of soil samples to understand the composition and extent of 

alluviums, approaches that were time-consuming and costly as they included 

inspections and topographic surveys (AMIT et al., 1996). 

The transition to more advanced methods began with remote sensing 

technologies. Using satellite imagery and synthetic aperture radar (SAR) transformed 

the ability to map and analyse large alluvial areas more precisely. Farr and Chadwick 

(1996) demonstrated the effectiveness of these technologies by using SAR data to 

map alluvial fans in the Kun Lun Mountains, China, enabling the mapping of the 

morphology of alluvial fans and the identification of geomorphic processes. Similarly, 

Hertz et al. (2016) and Gaber et al. (2010) utilised SAR to analyse alluvial surfaces in 

deserts. Zhang et al. (2013) combined SAR and Digital Elevation Models (DEMs) to 

map alluvial fans.  

Goorabi et al. (2021) and Iacobucci et al. (2024) utilise DEMs to enhance the 

geomorphological mapping of alluvial fans in arid regions, applying quantitative 

methods such as morphometric analysis and topographic feature extraction to identify 

and characterise these formations. 

Crouvi et al. (2006) used field spectrometry and hyperspectral remote sensing 

in the Negev Desert, Israel, to identify specific spectral signatures associated with 

developing desert pavements and accumulating rock coatings, with an accuracy 

margin of approximately 15%. The introduction of multispectral techniques significantly 

impacted the identification of alluviums. Gillespie et al. (1984) used NASA's Thermal 

Infrared Multispectral Scanner (TIMS) to map alluvial fans in Death Valley, California, 

demonstrating the effectiveness of thermal sensing in discriminating between different 
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sediments. Al-Juaidi et al. (2003) investigated the fusion of remote sensing data to map 

geomorphological features and date alluvial surfaces in Saudi Arabia. 

The introduction of Light Detection and Ranging (LiDAR) has added a new 

dimension to the identification of alluviums, enabling the creation of accurate DEMs. 

These models facilitate detailed analysis of the topography and structure of alluviums, 

allowing for the identification of geomorphological features with unprecedented 

precision. Hohenthal et al. (2011) and Cavalli et al. (2008) highlight that LiDAR has 

become an efficient tool for obtaining detailed topographic information, even in 

mountainous and densely forested areas.  

Pioneering studies by Staley et al. (2005) and Frankel and Dolan (2007) 

demonstrated the effectiveness of LiDAR in analysing deposition patterns and 

characterising the roughness of alluvial fan surfaces. These studies revealed distinct 

deposition zones and allowed for differentiation between alluvial fan surfaces of 

varying ages. Subsequent research, such as that by Cavalli and Marchi (2008) and 

Regmi (2014), also employed LiDAR in identifying and classifying alluvial fans. 

The convergence of such studies and machine learning (ML) methods has 

gained prominence in recent years in hydrological research. As Muñoz-Carpena et al. 

(2023) highlighted, integrating these approaches can reduce the uncertainty of 

hydrological models and improve the accuracy of predictions, particularly in large 

integrated systems. 

Two types of studies on groundwater using machine learning techniques stand 

out in the literature. The first focuses on groundwater detection, with examples 

including the works of Díaz-Alcaide and Santos (2019), Ali et al. (2023), Seifu et al. 

(2023), Martinez-Santos and Renard (2020), and Nguyen et al. (2020). The second 

type involves developing models specifically for groundwater level prediction, such as 

the studies by Ardabili et al. (2020), Tao et al. (2022), UC-Castillo et al. (2023), Gholami 

et al. (2023), Kayhomayoon et al. (2022), Vadiati et al. (2022), Shakya et al. (2022), 

Srivastava et al. (2023), Gaffor et al. (2022), Luiz (2022), and El Bilali et al. (2021). 

While groundwater research has attracted substantial attention, applying ML 

techniques to identify and classify alluvial formations, such as alluvial fans, has received 

less focus. A few researchers have explored this area, but these few studies have 

contributed valuable insights into the delineation and characterisation of alluvial areas. 
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Pipaud and Lehmkuhl (2017) conducted a study that presents a method for 

delineating and classifying alluvial fans using DEMs combined with the mean-shift 

clustering technique and a support vector machine (SVM). The input variables used in the 

segmentation included morphometric parameters such as slope, transverse curvature, 

longitudinal curvature, asymmetry of altitude values, and the gradient deviation from the 

fan apex. The study used Shuttle Radar Topography Mission (SRTM) data with a 30-

metre resolution. The mean-shift segmentation was applied repeatedly with different 

parameters to capture the variability of the alluvial fans. Subsequently, an SVM was used 

to classify the already grouped objects. The results showed that this approach, called 

Object-Based Morphometric Analysis (OBMA), achieved good results. It was measured 

using fuzzy membership values derived from the SVM classification to select the most 

appropriate segmentation for each identified alluvial fan. 

Babic et al. (2021) also modelled and classified alluvial fans using DEMs and 

ML techniques. The study focused on torrential alluvial fans in Slovenia, identifying 

seven main geomorphometric parameters: mean hinterland slope, mean torrent slope, 

Melton basin roughness number, relief ratio, the ratio between fan area and hinterland 

area, Melton alluvial fan number, and mean fan slope. By comparing five ML methods, 

including Random Forest (RF), Genetic Programming, SVM, Neural Network, and a 

hybrid Euler graph method, the researchers demonstrated these approaches' 

effectiveness in automatically classifying alluvial fans prone to debris flows. The study 

utilised data from various satellite image sources, such as ASTER, GeoEye, Ikonos, 

WorldView, ALOS, and SPOT Image, with resolutions ranging from 2 metres 

(WorldView) to 30 metres (ASTER and SRTM). The results, validated with empirical 

data, showed that Genetic Programming performed the best in classification. 

Rabanaque et al. (2021) conducted a large-scale hydro morphological analysis 

of ephemeral streams using ML algorithms, specifically SVM and RF, to segment and 

classify river channels and associated fluvial forms. The input variables included active 

channel width, valley floor width, slope gradient, route distance, and specific stream 

power, along with remote sensing data from Sentinel-2 spectral bands (RGB, NIR1, 

SWIR1, SWIR2) and spectral indices as the Normalised Difference Vegetation Index 

(NDVI), Green Red Vegetation Index (GRVI), and Normalised Difference Water Index 

(NDWI), as well as textural indices like variance, correlation, contrast, entropy, second 

moment, mean, and dissimilarity. LiDAR data from the Plan Nacional de Ortofotografía 
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Aérea (PNOA-LiDAR) Project were used to create a DEM with a resolution of 25 m, 

which was subsequently resampled to 10 m using bilinear interpolation. This technique 

calculates the value of a new pixel as a weighted average of the four nearest original 

pixels. The accuracy of the models was assessed using the confusion matrix, 

predictive accuracy, and Cohen's Kappa index, with the SVM achieving an average 

accuracy of 0.87 and Kappa of 0.84. In contrast, the RF achieved an average accuracy 

of 0.85 and Kappa of 0.81.  

The history of alluvium identification reflects a continuous evolution from 

observational methods to increasingly sophisticated techniques. Advancements in 

computational power have driven this progression, the need to better understand 

geomorphological processes, and the imperative to manage natural resources more 

effectively. 

 

MATERIALS AND METHODS  
 

The study area is the Riacho do Tigre watershed, located in the city of São João 

do Tigre, in the State of Paraíba. Approximately 560 km² is situated on the Borborema 

Plateau, characterised by the predominance of crystalline rocks, influencing the 

region's relief. The altitude of the watershed ranges approximately from 500 to 1100 

metres. The slope varies between 0 and 114%. The climate is tropical semi-arid, with 

an average annual rainfall of 431.8 mm (Silva, 2017). These watershed characteristics 

are directly related to the landscape formation in the area. Higher regions are sediment 

formation zones, while lower regions are deposition areas for these elements 

transported by rainwater. This process is crucial for the formation of the alluvial areas. 

The Riacho do Tigre watershed comprises three main streams (Figure 2). The 

principal stream is Riacho do Tigre, with altitudes ranging from 500 to 800 meters and an 

approximate length of 40 km. The Cacimbinha stream has a length of 32 km and an altitude 

variation between 550 and 750 meters. Additionally, the watershed includes the Santa Maria 

stream, which is 21 km long with altitudes varying between 600 and 950 meters. 

Figure 3 presents the sections identified as alluvial areas within the Riacho do 

Tigre watershed. These regions, highlighted in blue, denote areas where sediment 

deposition occurs as a result of fluvial dynamics. The map also delineates non-alluvial 

areas, the primary river courses, and the watershed boundary. 
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Figure 2 - Riacho do Tigre Watershed 

 
 Drafting: Authors (2024).  

 

Figure 3 – Spatial Distribution of Alluvial Areas in the Riacho do Tigre Watershed 

Drafting: Authors (2024) 
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The acquisition of the fifteen attributes that comprise the database was conducted 

using ArcMap software, version 10.8, a Geographic Information System (GIS) tool. Through 

this tool, essential spatial and geographical analyses were carried out for the collection of 

variables. The first step of the work involved processing SRTM images with a resolution of 

30 meters. The flowchart in Figure 4 outlines the steps to obtain the database. 

 

Figure 4 – Methodology for obtaining the attributes used in the modelling

 

Drafting: Authors (2024) 

 

Along the three main rivers of the Riacho do Tigre basin, a 210-meter buffer 

zone was created on each side from the centre of the channel. Within this polygon, 

1,458,886 points were distributed. Creating the point cloud was a crucial 

methodological step for obtaining the fourteen input and output variables. The table 

below characterises each of the attributes used in the modelling. 
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Box 1 – Modelling Variables  

Attribute Description 

Altitude The elevation relative to sea level is measured in metres for each point. 

Accumulation Area Indicates the accumulation area from the headwater to the point, measured 
in square kilometres. 

Index of 
Connectivity 

The index measures, on a pixel scale, the connectivity of a given point with 
other parts of the basin. The index ranges from [-∞, +∞]. 

Plan Curvature Represents the curvature of the terrain in the horizontal plane. 

Profile Curvature Represents the curvature of the terrain in the vertical plane. 

Total Curvature Represents the curvature of the terrain by combining the two previous 
curvatures. 

Slope Measures the inclination, in degrees, of the terrain relative to the horizontal.  

Distance to River 
Centre 

Measures the distance of each point, in metres, to the centre of the channel. 

Distance to 
Headwaters 

Measures the distance of each point, in metres, to the headwater of the river 
basin. 

Lithology A categorical variable that extracted the lithological type under each point: 1. 
Granitoids, 2. Metagranitoids, 3. Metamorphic Complexes, and 4. Alluvial Areas. 
Data were obtained from maps of the Geological Survey of Brazil (SGB/CPRM). 

Rainfall Based on data from five pluviometric stations (São João do Tigre, Camalau, 
São Sebastião do Umbuzeiro, Jataúba, and Poções), interpolation was 
conducted to measure the amount of rainfall (mm) for each point. The data 
used in the interpolation were obtained from the Agência Executiva de 
Gestão das Águas do Estado da Paraíba (AESA) and corresponded to the 
average precipitation over the last 30 years. 

Distance Ratio A ratio with the distance to the river centre as the numerator. The denominator is 
the sum of the distance from the river centre to the channel margins. 

SPI Stream Power Index measures the erosive power of running water on the 
terrain. 

TWI Topographic Wetness Index, a topographic index that indicates soil moisture. 

Alluvium (Output) Alluvium is the output variable. Points identified as alluvial areas were 
recorded as 1, while non-alluvial areas were recorded as 0. 

 
Drafting: Authors (2024) 

 

The development of this stage of the work was carried out using MATLAB 

software version R2024a. The Statistics and Machine Learning Toolbox package 

(Version 24.1, R2024a) was also utilised. The flowchart in Figure 5 illustrates the 

methodological steps adopted for data modelling and the DT creation. 
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Figure 5 – Flowchart illustrating the methodology for creating the model

 

Drafting: Authors (2024) 

 

Preprocessing was conducted from the data importation, which involved 

removing some attributes that were not part of the modelling and partitioning the set of 

variables into input and output data for training and testing. 

Following this step, the model was trained using the fitctree function in MATLAB. 

This function employs the Gini Index as a criterion to split the decision tree nodes. Model 

validation was performed through k-fold cross-validation using the crossval function. 

This method allowed for the assessment of model performance by dividing the dataset 

into k equal parts, training the model on k -1 parts, and testing it on the remaining part. 

The value of k was iterated from five to one hundred, with the average accuracy recorded 

for each iteration. Additionally, the bootstrap method was applied to calculate confidence 

intervals for the average accuracies, using 2000 samples for each value of k, providing 

a significant estimate of the variability of these indices. 

After validating and testing the model, pruning was performed using the minimum 

cost-complexity pruning technique. Various alpha values were tested to identify the 

pruning that resulted in the best accuracy with the fewest number of nodes in the tree. 

The best configuration was determined based on the obtained accuracy, resulting in a 

simpler and more effective tree. The results and evaluation metrics for the model 

construction, including pruning details, will be presented in the next chapter. 

  

RESULTS 
 

Figure 6 depicts the classification tree that represents the final and most accurate 

model obtained to detect the presence of alluvial areas. The decision to use a DT in this 

research was due to its comprehensibility, providing a clear and accessible interpretation 
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of the results. The DT illustrates the hierarchical structure used to classify alluvial areas 

based on various input variables. The tree's root node uses the variable "Distance to River 

Centre", with a cut-off point of 38.7 metres. If the distance to the channel is less than this 

value, the tree branches to the left; otherwise, it branches to the right. On the left branch, 

if the "Altitude" is less than 667.89 metres, the decision then depends on the "Distance 

Ratio," where values less than 0.36 indicate class 1 (alluvial area). 

 

Figure 6 – Decision Tree Used for the Classification of Alluvial Areas 

 

Drafting: Authors (2024) 

 

In contrast, values equal to or greater indicate class 0 (non-alluvial areas). If the 

"Altitude" is greater than or equal to 667.89 metres, the tree evaluates the 

"Accumulation Area"; areas with accumulation less than 60.34 square kilometres are 

classified as class 0, and those equal to or greater as class 1. On the right branch of 

the tree, if the "Distance to the River Centre" is greater than or equal to 38.70 and less 

than 68.70 metres, the decision is based on "Altitude" at 591.99 metres. The 

classification for altitudes less than this value depends on "Lithology"; if the lithology is 

categorised as Granitoids, Metagranitoids, or an Alluvial Deposit area, the class is 1. 
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Otherwise, the class is 0. Altitudes equal to or greater than 591.99 metres are classified 

as class 0. Finally, distances to the channel equal to or greater than 68.7 metres are 

always classified as class 0. 

Correlation analysis is a statistical technique used to measure the strength and 

direction of the linear relationship between two variables based on Pearson's correlation 

coefficient (R). The variables that showed the most significant correlations were (Figure 

7): Distance to the River Centre, with a correlation of -0.56, exhibited the strongest 

negative relationship, indicating that shorter distances to the river centre are associated 

with a higher likelihood of alluvial deposits. TWI (Topographic Wetness Index) had a 

positive correlation of 0.41, suggesting that areas with higher topographic moisture are 

more likely to exhibit alluvial deposits. Distance Ratio, with a correlation of -0.34, 

indicates that smaller distance ratio values are associated with a higher probability of 

alluvial deposits. The variable Accumulation Area, with a correlation of 0.32, suggests 

that areas with more significant water accumulation are more likely to have alluvial 

deposits. Connectivity showed a correlation of 0.29, indicating that hydrologically more 

connected areas are associated with a higher likelihood of alluvial deposits. Slope, with 

a negative correlation of -0.29, indicates that steeper terrains are less likely to have 

alluvial deposits. Other variables such as Altitude, Rainfall, SPI (Stream Power Index), 

and various geological formations (Granitic, Metamorphic Complexes, Alluvial Deposits 

and Metagranitoids) showed lower intensity correlations with the output Variable. 

 

Figure 7 – Correlation between Input and Output Variables 

 
Drafting: Authors (2024) 
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The performance results of the classification model, as presented in Table 2, 

indicate that the accuracy, precision, recall, and other evaluation metrics achieved 

consistent values, highlighting the model's effectiveness in detecting alluvial areas. 

 

Box 2 – Model Performance Results 

Metric Value 

Accuracy (The ratio of correct predictions to the total number of predictions) 0.92 

Precision (The ratio of true positive predictions to the total predicted positive cases) 0.81 

Recall (The ratio of true positive predictions to the total actual positive cases) 0.70 

F1-Score (The harmonic mean of precision and recall) 0.75 

Error Rate (The ratio of incorrect predictions to the total number of predictions) 0.08 

Area Under ROC (The area under the ROC curve representing model 
discrimination) 

0.91 

Drafting: Authors (2024) 

 

The accuracy measures the total correct predictions concerning the total number of 

points. The model achieved an accuracy of 0.92 during the testing phase. The confusion 

matrix of the model (Figure 8) indicates that the Precision, which is the number of correct 

predictions for alluvial areas in relation to the total points classified as alluvial, was 0.81. 

 

Figure 8 – Confusion Matrix for Model Performance Evaluation 

 
Drafting: Authors (2024) 
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Recall, which measures the number of correctly identified alluvial areas with the 

total alluvial points, was 0.70. The F1-Score, the harmonic mean between precision and 

recall, was 0.75. The error rate found by the model, which is the ratio of the sum of 

incorrect evaluations to the total evaluations, was 0.084. The ROC curve (Receiver 

Operating Characteristic) is shown below. The area under the ROC curve was 0.91, 

indicating good discrimination between positive and negative classes. 

 
Figure 9 – ROC Curve for Model Performance Evaluation  

 

Drafting: Authors (2024) 

 
 

The DT model was validated using k-fold cross-validation and Bootstrap 

resampling. Initially, cross-validation was applied with different values of k (ranging from 

5 to 100) to calculate the mean accuracy. It was observed that the mean accuracy 

remained consistently high, indicating strong model performance. 
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Figure 10 –  Mean Accuracy and Confidence Intervals for k-Fold Cross-Validation  

 

Drafting: Authors (2024) 

 
To ensure the precision of our estimates, we used bootstrapping with 2000 

samples to calculate the confidence intervals of accuracy for each value of k. The results 

in Figure 10 presented narrow confidence intervals, suggesting that the estimates are 

robust and precise. After validation, we selected the model corresponding to the k value 

with the highest average accuracy. This model, generated with k = 76, was subsequently 

used in the pruning process to refine the DT further. 

In this study, we pruned the DT using the cost complexity technique to enhance 

the model's generalisation and avoid overfitting. We defined a range of values for the 

alpha parameter, which controls the tree's complexity. Using an iterative approach, we 

varied alpha across 500 points. For each alpha value, the tree was pruned, and both the 

accuracy and the number of remaining nodes in the pruned tree were calculated. This 

approach allowed us to assess the impact of different pruning levels on the model's 

performance. After analysing the results, we selected the alpha value (0.0021) that 

offered an optimal balance between accuracy and model simplicity. 

 
DISCUSSION 
 

The analysis of the importance of predictors, measured by the reduction of the 

Gini impurity criterion attributed, reveals the most relevant factors for the DT model. 

Distance to Channel" emerged as the most significant attribute, substantially contributing 

to the model's accuracy. It indicates that areas closer to channels have a significantly 
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higher probability of presenting alluvium due to water flow dynamics and sediment 

deposition. "Altitude" was identified as the second most important predictor, suggesting 

that the elevation of the terrain strongly influences the occurrence of alluvium, possibly 

by affecting the speed and volume of surface runoff. "Distance Ratio," although of lesser 

importance, is still relevant, indicating that the relationship between different 

geomorphological distances can impact the deposition of alluvium. "Accumulation Area" 

also proved significant, suggesting that areas accumulating more water have a greater 

propensity to develop alluvium due to the increased capacity for sediment transport. 

Finally, "Lithology," representing the types of rocks and soils present, stood out as a 

relevant factor, possibly influencing soil permeability and resistance to erosion. The low 

correlation between the output variable and the categorical variable "Alluvial Deposits" 

suggests a potential need to revise and update the data from the Geological Survey of 

Brazil (SGRiB/CPRM). This discrepancy indicates that the current representation of 

alluvial deposits by the SGB may not accurately reflect the lithological reality of the 

studied areas.  

When comparing the results of this study with those of Pipaud and Lehmkuhl 

(2017), Babic et al. (2021), and Rabanaque et al. (2021), clear similarities emerge in the 

use of geomorphological and hydrological variables across all studies. Pipaud and 

Lehmkuhl (2017) utilised parameters such as curvature and slope to identify alluvial fans. 

Babic et al. (2021) focused on geomorphometric variables, such as the relationship 

between area and slope to classify torrential fans. In contrast, Rabanaque et al. (2021) 

integrated distance-related variables, including channel width and route distance, into 

their hydromorphological analyses of ephemeral streams. 

In this study, the most significant variables for the decision tree model that identified 

alluvial deposits were 'Distance to Channel', 'Altitude', 'Distance Ratio', 'Accumulation 

Area', and 'Lithology'. While there are similarities in using parameters such as curvature 

and slope, this study differs by emphasising distance and accumulation area variables, 

which are particularly relevant for characterising alluvial deposits in ephemeral streams. 

This shift in focus highlights the difference between the types of formations studied: 

whereas previous research concentrated on alluvial fans, this work focuses on identifying 

alluvial deposits along channels. As a result, variables such as 'Distance to Channel' and 

'Accumulation Area' are identified as key factors in the model. 
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 These observations highlight the importance of specific geomorphological and 

hydrological parameters in identifying different types of alluvial formations. While Pipaud 

and Lehmkuhl (2017) and Babic et al. (2021) demonstrated the relevance of curvature 

and slope in the classification of alluvial fans, this study emphasises the crucial role of 

distance-related variables, such as 'Distance to Channel' and 'Accumulation Area', in the 

detection of alluvial deposits. This contrast in parameters reflects the different scales and 

geomorphological processes involved. Alluvial fans are typically larger-scale formations 

influenced by broader topographical features, which explains the focus on slope and 

curvature in previous studies. On the other hand, alluvial deposits, particularly in semi-arid 

environments, are more sensitive to hydrological dynamics and proximity to water 

channels. It justifies the prioritisation of distance and accumulation variables in this study. 

The analysis of the indices indicates that the model is accurate. However, there 

is still ample room for improving its recall to identify more areas that are truly alluvial 

correctly. Considering the inherent limitations of using images with a spatial resolution 

of 30 metres, such as those from the SRTM, the results must be discussed. This 

resolution presents significant limitations in detecting alluvial areas as it may not capture 

fine details of alluvial features, such as small sediment deposits and subtle variations in 

terrain morphology. Additionally, the 30-metre resolution may not be sufficient to 

accurately pinpoint the exact location of alluvial areas due to the varying sizes of these 

features. Various input data, such as altitude, slope, and land cover, are restricted to this 

resolution, resulting in a simplified and generalised landscape view. This simplification 

can lead to inaccurate classifications and hinder the precise identification of the 

boundaries of alluvial areas.  

The 30-metre images are the only ones available for the watershed studied in the 

present research. Although they are helpful for large-scale analyses and provide an 

essential overview, studies focused on detecting alluvial areas may require higher 

spatial resolution for more detailed and accurate results. Various studies have used 

higher-resolution data to improve the accuracy of identifying geomorphological features. 

For example, Pipaud and Lehmkuhl (2017) employed DEMs with a 10-metre spatial 

resolution, which allowed for a more detailed representation of terrain features. Babic et 

al. (2021) utilised a similar resolution, contributing to a more refined analysis of torrential 

fans. On the other hand, Rabanaque et al. (2021) used a 5-metre DEM, which resulted 

in even greater precision in their hydromorphological analysis of ephemeral streams. 
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These variations in spatial resolution had a noticeable impact on the results: studies that 

used finer resolutions could capture smaller-scale features and produce more accurate 

classifications of alluvial formations. 

 

CONCLUSION 
 

There is a global increase in concern for water resources and a growing interest 

in studies aimed at identifying groundwater. This research, conducted in a semi-arid area 

of northeastern Brazil, utilised a DT to classify points in the three main channels of the 

basin as alluvial areas. 

The model achieved an accuracy of 0.92. The area under the ROC curve was 

0.91, indicating good discrimination between positive and negative classes. The analysis 

of the indices suggests that the model is accurate. However, there is still much room for 

improvement in its recall, allowing it to correctly identify more truly alluvial areas. 

Furthermore, the results obtained in this study demonstrate that the application 

of ML techniques, specifically DT, is effective in detecting alluvial deposits. The analysis 

of predictor importance revealed that variables such as "Distance to the River Centre" 

and "Altitude" are crucial for the model's accuracy. Cross-validation and Bootstrap 

confirmed the robustness and precision of the model's estimates. However, the 30-metre 

spatial resolution of the images used presents significant limitations in capturing details 

of alluvial features. Therefore, higher-resolution data will be used in future studies to 

improve the identification and mapping of such areas.  
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